Supporting Information Cryogenic Photolysis of Activated Bleomycin to Ferric Bleomycin Richard M. Burger, Oleg M. Usov, Vladimir M. Grigoryants, and Charles P. Scholes

Structure 1S. The structure of bleomycin (BLM) as determined in the 1970s by H. Umezawa and colleagues,¹ who discovered this *Streptomyces* antibiotic family and its widely-utilized anti-tumor properties. The *bullets* indicate nitrogenous metal-ligands. Individual bleomycins have different terminal R groups.

Figure 1S. Effects of ¹H, ²H, ¹⁷O, and ⁵⁷Fe spin isotopes on EPR spectra of ABLM cryophotoproducts. ABLM samples are shown: prior to (dotted lines) and after (solid lines) a partial (20 min) photolysis. Samples were prepared with either: (**a**) natural abundance constituents (¹H), (**b**) perdeuterated solvents (²H), (**c**) perdeuterated solvents and ¹⁷O₂, or (**d**) perdeuterated solvents and ⁵⁷Fe. The ¹H and ²H samples were 200 μ L samples and the ¹⁷O and ⁵⁷Fe were 60 μ l samples of 1 mM ABLM. Both types of samples received radiation of 300 einsteins/mol of ABLM. EPR spectroscopic conditions were as in Figure 1 in the main body of the text.

Figure 2S. Comparison of Fe(III)•BLM spectra near g_1 . The product was created by cryophotolysis or *de novo* at room temperature by addition of Fe(III) to BLM in HEPES buffer. EPR conditions for taking these spectra were as in Figure 1 in the main body of the text.

Figure 3S. Temperature-dependent interconversions of the photolyzed ABLM radical. This sample, in perdeuterated solvent, was also used for Figure 4 in the main body of the text. These temperature dependent changes are fully reversible in the 6-50 K range. These spectra were obtained at 3 G modulation, 200 s total signal accumulation over the field range shown, 20 mW power, $v_{EPR} = 9.52$ GHz.

Figure 4S. Course of ABLM cryophotolysis in the presence of $d(GGAAGC^{L}TTCC)_2$, which has a 2'O-,4'-methylenylcytidine (C^L) not cleaved by ABLM under ambient conditions The percentage change in the ABLM signal was estimated from the g = 1.94 derivative, measured at 15 K with 2 mW microwave power and 6 G modulation. Concentrations of Fe-BLM and $d(GGAAGC^{L}TTCC)_2$ were 1 mM in a 60 µL sample.

Table 1S. Effect of a 2'O-,4'-methylenylcytidine (C^L) on DNA Cleavage

Oligonucleotide	Base propenal yield $(\mu M)^{a}$
d(GGAAGCTTCC) ₂	14.3
d(GGAAGC ^L TTCC) ₂	<0.1
both	15.9

^aSamples (75 μ L) contained 0.11 mM bleomycin, 0.11 mM oligonucleotide duplex (each), 20 mM sodium phosphate buffer, pH 7.8, and 0.10 mM Fe(II), added last. Run 1 h at 0 °C, to completion, incubation mixtures then received 725 μ L TBA for base propenal assay.

Reference

(1) Takita, T.; Muraoka, Y.; Nakatani, T.; Fujii, A.; Umezawa, Y.; Naganawa, H.; Umizawa, H. *J. Antibiot. (Tokyo)* **1978**, *31*, 801.